Designing SAT for HCP
نویسنده
چکیده
For arbitrary undirected graph G, we are designing SATISFIABILITY problem (SAT) for HCP, using tools of Boolean algebra only. The obtained SAT be the logic formulation of conditions for Hamiltonian cycle existence, and use m Boolean variables, where m is the number of graph edges. This Boolean expression is true if and only if an initial graph is Hamiltonian. That is, each satisfying assignment of the Boolean variables determines a Hamiltonian cycle of G, and each Hamiltonian cycle of G corresponds to a satisfying assignment of the Boolean variables. In common case, the obtained Boolean expression may has an exponential length (the number of Boolean literals).
منابع مشابه
Solving Hard Combinatorial Problems with GSAT - A Case Study
In this paper, we investigate whether hard combinatorial problems such as the Hamiltonian circuit problem HCP (an NP-complete problem from graph theory) can be practically solved by transformation to the propositional satissability problem (SAT) and application of fast universal SAT-algorithms like GSAT to the transformed problem instances. By using the eecient transformation method proposed by...
متن کاملA linear-size conversion of HCP to 3HCP
We provide an algorithm that converts any instance of the Hamiltonian cycle problem (HCP) into a cubic instance of HCP (3HCP), and prove that the input size of the new instance is only a linear function of that of the original instance. This result is reminiscent of the famous SAT to 3SAT conversion by Karp in 1972. Known conversions from directed HCP to undirected HCP, and sub-cubic HCP to cub...
متن کاملAn Effective Algorithm for and Phase Transitions of the Directed Hamiltonian Cycle Problem
The Hamiltonian cycle problem (HCP) is an important combinatorial problem with applications in many areas. It is among the first problems used for studying intrinsic properties, including phase transitions, of combinatorial problems. While thorough theoretical and experimental analyses have been made on the HCP in undirected graphs, a limited amount of work has been done for the HCP in directed...
متن کاملEfficient SAT Techniques for Absolute Encoding of Permutation Problems: Application to Hamiltonian Cycles
We study novel approaches for solving of hard combinatorial problems by translation to Boolean Satisfiability (SAT). Our focus is on combinatorial problems that can be represented as a permutation of n objects, subject to additional constraints. In the case of the Hamiltonian Cycle Problem (HCP), these constraints are that two adjacent nodes in a permutation should also be neighbors in the grap...
متن کاملAssessment of Alkaline Phosphatase Activity in Hydatid Cyst Protoscolices and Liver Tissue as a Pathological Biomarker
Introduction: Hydatid cyst disease is caused by the protoscolices of Echinococcus granulosus. Alkaline phosphatase (ALP) enzyme is required for metabolism, physiology, immunology, and nutrients absorption in parasite. The aim of this study was to compare the level of ALP activity (as a pathological biomarker) in hydatid cyst protoscolices (HCP) with that of sheep liver tissue and to determine t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره cs.LO/9903006 شماره
صفحات -
تاریخ انتشار 1999